If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-833y-344=0
a = 8; b = -833; c = -344;
Δ = b2-4ac
Δ = -8332-4·8·(-344)
Δ = 704897
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-833)-\sqrt{704897}}{2*8}=\frac{833-\sqrt{704897}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-833)+\sqrt{704897}}{2*8}=\frac{833+\sqrt{704897}}{16} $
| T=75-29x | | 1/x+1/2x=2/3 | | 5x+2/3=10 | | x4+2362.852631x2+194371.784291=0 | | 6x+3/3=10 | | 2h+7=23 | | 2(2x-6)=6x-10 | | (2)2x-6=6x-10 | | 2x-6=(1/2)6x-10 | | 11.50=0.13a+2.50 | | X-3/2+2/x+3=13/4 | | 5x-3/3x+5=3/5 | | 3^(2x-3)=27^5 | | X-1/2x-8=5/8 | | 0.06(y-7)+0.19y=0.05y-0.40 | | 7(5x-1)-5x=40x-7 | | 20=1/4m | | 0.1-0.01(x+1)=-0.02(3-x | | 8(2n+5)=9(6n+7)+4 | | 0.03(y-8)+0.41y=0.04y-0.20 | | 10−3x=2x−8x+40 | | 0.11(y-5)+0.06y=0.07y-0.50 | | 1=1.5x | | 1+5v+v-6=0 | | 6-7n-2n-8=0 | | 32(5-2.5x)=12(2x-10)+51.2 | | 4-4x7+3=X | | 15x2-12x-48=0 | | 5b2-2b-7=0 | | x/4+6x/7=31 | | -13+5e=-3/4 | | 3s2-4s=2 |